
CPE 470 - RAM

RAM: Random Access Memory

RAM

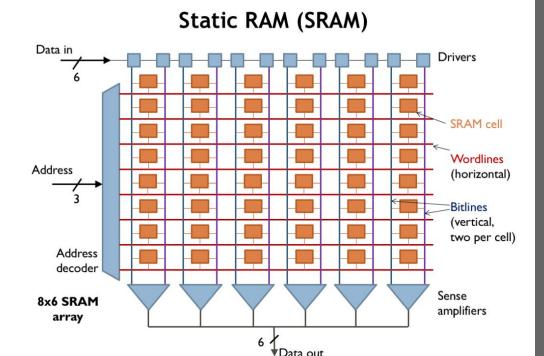
- Used to Behavioral RAM in FPGA Land
 - o reg [31:0] ram [1023:0];
- In ASIC Land, have to use IP

- Tradeoffs between capacity and latency
 - Fast memories → small
 - Large memories → slow

- Often Analog
 - Most Memory cells are analog structures
 - Exception: Registers/ Flip Flops

Technologies have vastly different tradeoffs between capacity, access latency, bandwidth, energy, and cost

- ... and logically, different applications

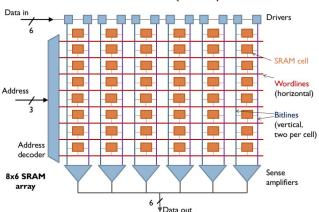

	Capacity	Latency	Cost/GB	
Register	1000s of bits	20 ps	\$\$\$\$	Processor Datapath
SRAM	~10 KB-10 MB	1-10 ns	~\$1000	Memory
DRAM	~10 GB	80 ns	~\$10	Hierarchy
Flash*	~100 GB	100 us	~\$1	1/0
Hard disk*	~I TB	10 ms	~\$0.10	subsystem

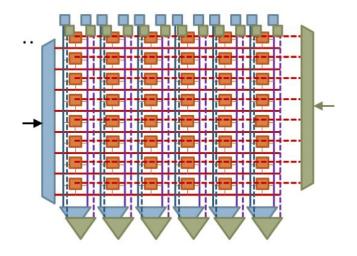
^{*} non-volatile (retains contents when powered off)

SRAM: Static RAM

SRAM

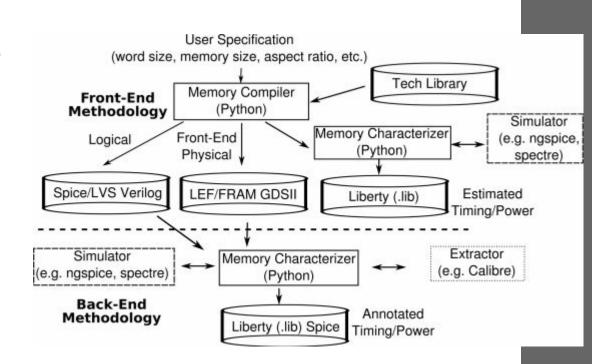
- Fastest On-Chip RAM
 - Except for flip flops which are not RAM
- Volatile Memory
 - Stores data as long as power is supplied
- 6 transistors per bit cell
 - Useful as a metric of size
 - More transistors = less dense
- Analog
 - Requires sense amplifiers to read each bit
 - Must be simulated with behavioral model, not gate-level


SRAM - Ports

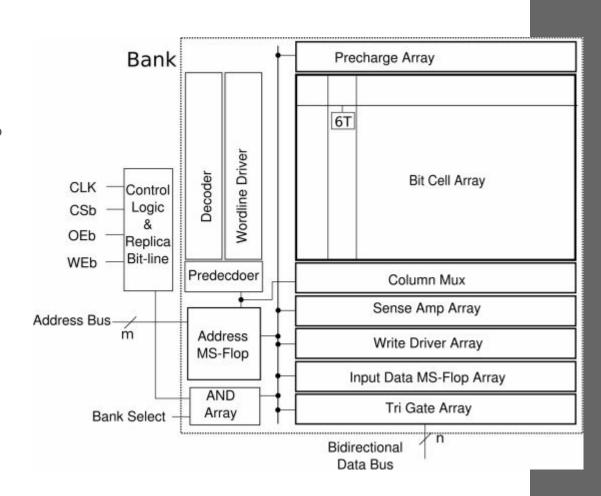

- Adding more access ports is expensive
 - Scaling from 1 to 2 ports doubles amount of wires

- Wires are often limiting factor
 - Leads to ~n² scaling for adding ports

 SRAMs with more ports are often less dense, harder to find


Static RAM (SRAM)

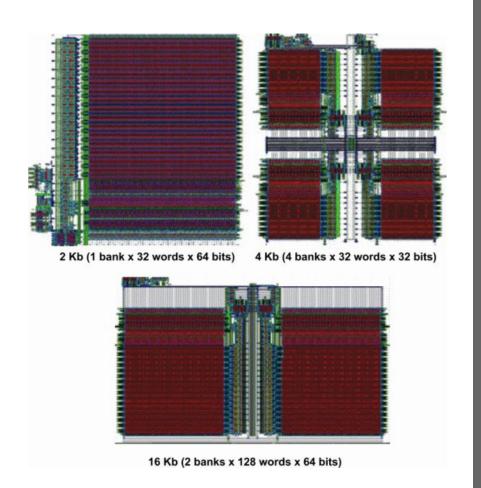
Ram Compilers


- How do we design RAM to fit our needs?
 - What if there is not pre-existing IP for our use case?
- Solution: Ram Compilers
 - RAM is made of repetitive structures
 - Copy analog structures automatically
- Characterizes RAM
 - Generates SPICE and simulates electrically
 - Creates timing file (.lib)
 - Creates verilog models

OpenRAM

- Many RAM compilers are highly expensive
 - Good RAM is valuable IP
- OpenRAM → Open Source alternative

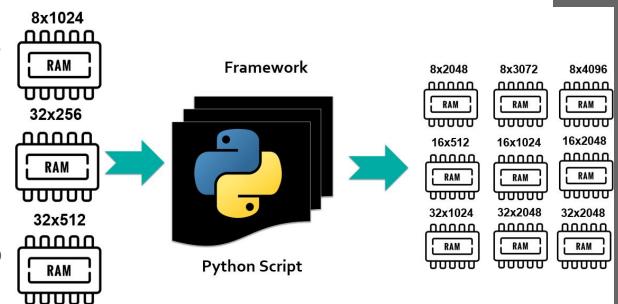
- Breaks RAM down into basic elements
 - Sense Amps to Read, Address Decoders, etc.
 - Not PDK specific



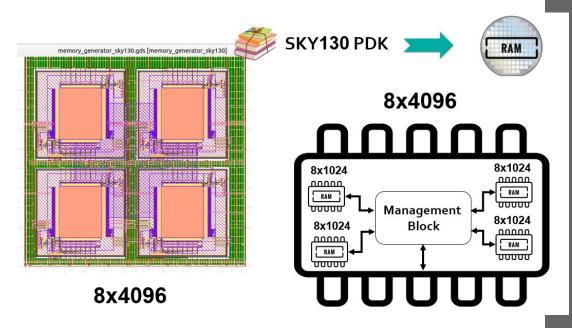
OpenRAM

- User/Community implements most basic modules
 - Each PDK needs its own implementation

- Compiler arranges and scales modules based on input sizes
 - Always a power of 2

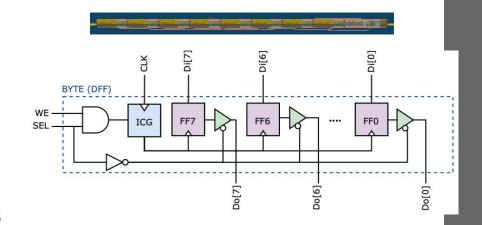

Outputs spice, gds, etc.

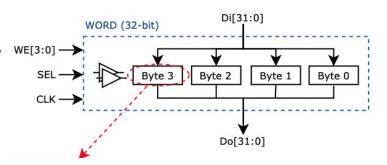
Ram Layout & Interleaving Tools


- Sometimes SRAM compilers are not enough
 - Almost always limited to powers of 2 for size and width
 - Compiling your own SRAM is difficult

- Solution: Combine existing
 IP into new sizes
 - Ram Layout tools help combine modules into new sizes

Ram Layout Tools

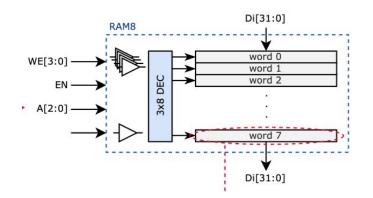

- Solution: Combine existing IP into new sizes
 - Ram Layout tools help combine modules into new sizes
- Tools create:
 - Interconnects between rams in verilog
 - Macro positions
- Can scale to non powers of 2

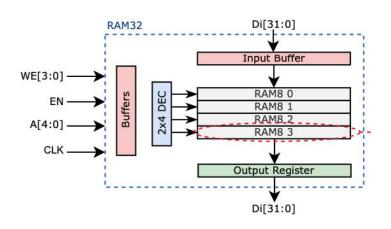


DFFRAM: D-Flip-Flop Ram

DFFRAM

- Problem 1: SRAM is hard to validate
 - Simulation is done with behavioral model, not actual hardware
- Problem 2: SRAM doesn't work on OpenLane2
 - Only works on OpenLane1
- Solution: DFFRAM
 - Array of Densely Packed Flip Flops
 - Purely digital (no analog elements)
 - Can do gate-level simulation of cells
- 20-30 Transistors per Bit
 - ~5x worse density than SRAM
 - ~5x better than declaring a 2d array in verilog





DFFRAM - Scaling Up

- Built using Recursive Macros
 - 8 DFFs make a byte, 4 bytes make a word
 - Words are stacked vertically to make rams
 - 8 Words Stacked makes a RAM8
 - 2 RAM8s make a RAM16, etc.

- Provides macros generally up 512 words (2 KB)
 - Most have 1 read/write port
 - Some have 2 ports but on the smaller end of capacity

DRAM

- 1 Transistor per Bit
 - At least 6x denser than SRAM
- Highest Density Ram Available
 - Not usable on SKY130
 - Generally requires specific PDK
 - Often used off-chip
- Destructive Reads
 - Bits can only be read once
 - Have to re-write after each read
- Requires Refreshes
 - Bits last temporarily
 - Have to be refreshed every milliseconds

Glossary

DRAM: Dynamic RAM

SDRAM: Synchronous DRAM

DDR: Double Data Rate

DDR RAM

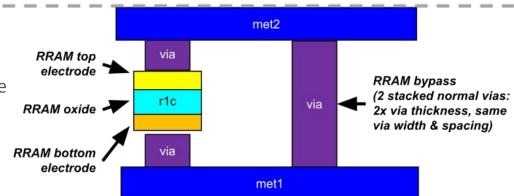
Also DDR RAM

"I don't think the highest density ram would be very good at DDR"

SONOS Flash

- Non-Volatile Flash Memory On Chip!
 - Supported by SKY130!

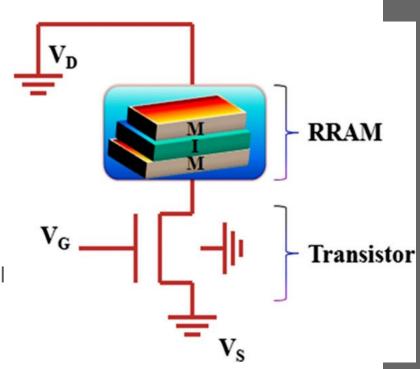
- Problem: requires fancy voltages to read and write
 - On the order of +10 and
 -3 volts
 - Usually digital chip only has +3.3 and +1.8 volts
 - Available as an analog cell
 - Yet to be wrapped in a usable macro


RRAM: Resistive RAM

RRAM / ReRAM

- Store values in the resistance of a conductor
 - 1 -> Low Resistance
 - 0 -> High Resistance

RRAM between met1/met2


- Use material that changes its resistance in an electric field
 - Resistance responds to voltage
 - Can be implemented vertically on chip

- Set/Reset using different voltages _ _ _
- Read by Measuring Current
 - \circ High Current $\rightarrow 1$

RRAM Advantages

- + Higher Density than SRAM
 - 1 transistor per bit
- + Reads are efficient
 - Low latency
 - Low energy
- + Non-Volatile
 - Holds resistive state on reset
 - Easier voltages than SONOS
- + Can sometimes hold multiple bits per cell

RRAM Disadvantages

- Higher write latency than read latency
 - Writes involve physical structure change
- Limited endurance compared to volatile technologies (SRAM, DRAM)
 - Finite number of writes
- Misbehaves at very high temperatures
 - Changes resistance

MRAM: Magnetoresistive RAM

MRAM

- Non Volatile, Similar to RRAM
 - Uses magnetic fields instead of electric fields to change resistance
 - Write by using the magnetic field of a current
- Generally more reliable than RRAM
 - + More write cycles
 - + Not as sensitive to temperature
- More expensive and less dense than RRAM
- Sensitive to magnetic fields

References

- https://ieeexplore.ieee.org/document/7827670
- https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10508358
- https://computationstructures.org/lectures/caches/caches.html#4
- https://sky130-fd-pr-reram.readthedocs.io/en/latest/background.html
- https://www.researchgate.net/figure/The-basic-cell-structure-of-1T1R-RRA M fig29 265727614
- https://www.synopsys.com/blogs/chip-design/rram-mram-non-volatile-me mory.html
- https://github.com/Baungarten-CINVESTAV/SKY130-Macro-Memory-Cell-Generator

•